Spatial and Temporal Resolutions of Imaging Techniques.

‹ Return to Capabilities Overview

Spatial and Temporal Resolutions of Imaging Technologies

Mature technologies that will benefit from further development include X-ray and neutron crystallography and scattering, scanning probe microscopies, X-ray tomography, synchrotron spectroscopy, and confocal microscopy. Techniques undergoing rapid development and with potential application to the mission of the U.S. Department of Energy’s Office of Biological and Environmental Research (BER) include X-ray free-electron laser ultrafast diffraction, time-resolved X-ray scattering, cryo-electron microscopy (cryoEM) and cryo-electron tomography (cryoET), infrared imaging methods, and super-resolution fluorescence imaging. New technologies not yet fully developed and applied to structural biology research supported by BER include dynamic EM, fluctuation scattering, ptychography, and in soil sensors.

Key: Å, Angstrom; EXAFS, extended X-ray absorption fine structure; fs, femtosecond; ks, kilosecond; µm, micrometer; µs, microsecond; mm, millimeter; ms, millisecond; nm, nanometer; ns, nanosecond; ps, picosecond; s, second; SAXS, small-angle X-ray scattering; SEM, scanning electron microscopy; TEM, transmission electron microscopy; TIRF, total internal reflection fluorescence; USANS, ultrasmall-angle neutron scattering; WAXS , wide-angle X-ray scattering; XANES, X-ray absorption near edge structure.